
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 13,437-464 (1991) 

A NUMERICAL METHOD FOR SUBCRITICAL AND 
SUPERCRITICAL OPEN CHANNEL FLOW CALCULATION 

JOHANNES VASSILIOU SOULIS 
Fluid MechanicsJHydraulics Division, Civil Engineering Department, Demokrition University of Thrace, Xanthi 67100, 

Greece 

SUMMARY 
A marching finite volume method is presented for the calculation of two-dimensional, subcritical and 
supercritical, steady open channel flow including the usually neglected terms of slope and bottom friction. 
The channel flow will be assumed to be homogeneous, incompressible, two-dimensional and viscous with 
wind and Coriolis forces neglected. A hydrostatic pressure distribution is assumed throughout the flow field. 
The numerical technique used is a combination of the finite element and finite difference methods. A 
transformation is introduced through which quadrilaterals in the physical domain are mapped into squares 
in the computational domain. The governing system of PDEs is thus transformed into an equivalent system 
applied over a square grid network. Comparisons with other numerical solutions as well as with measure- 
ments for various open channel configurations show that the proposed approach is a comparatively 
accurate, reliable and fast technique. 
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INTRODUCTION 

With the improvements in computational techniques and advances in computer technology, 
computational fluid dynamics researchers have found more effective ways of applying com- 
putational tools in the design and analysis of open channel flows. Computational procedures 
require very few restrictive assumptions and can be used to treat complicated configurations. 

There exists a class of open channel flow problems which can be adequately described in the 
context of depth-averaged, two-dimensional mathematical models. Essentially, the flow proper- 
ties are assumed to be invariant along the vertical direction. These simplified representations of a 
three-dimensional flow are justified where turbulent mixing, due to bottom roughness, effectively 
generates a uniform velocity distribution over the flow depth. A further assumption of hydrostatic 
pressure distribution seems to be valid if the water surface is not rough; and it is the objective of 
the designer to create a smooth water surface. 

For two-dimensional open channel flows in complex geometries it is convenient to make 
predictions using a non-orthogonal boundary-fitted computational mesh. The computational 
mesh thus formed comprises equidistantly located computational nodes. The greatest advantage 
of the above-mentioned transformation is the accuracy and ease of application of the various 
types of boundary conditions which will be required to be satisfied. 

Time-marching solutions of the governing flow equations are now widely used for the analysis 
of compressible flows' as well as for open channel flow a n a l y s i ~ . ~ * ~  Their main attraction is the 
ability to compute mixed subcritical-supercritical flows with automatic capturing of hydraulic 
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jumps. Thus it was decided to employ a marching finite volume technique in order to solve the 
flow equations using a non-orthogonal computational mesh comprised of equidistantly located 
computational nodes. 

Simplified solutions have been presented by Ippen: Rouse et d5  and others. Buseman's 
method of characteristics was applied by Ippen and Dawson6 to calculate the hydraulic jumps 
produced in supercritical flows in channels with varying cross-sectional area. Liggett and 
Vasudev' have presented a numerical solution for 2D high-speed channel flow including the slope 
and bottom friction terms. Charts were presented which gave an indication of the magnitude of 
the departure of the improved solution from the frictionless, zero-slope solutions. Two-dimm- 
sional finite difference calculation methods have been developed by McGuirk and Rodi' which 
described the circulation region immediately downstream of a side discharge into a flowing river. 
Chapman and Cuog9 lo have applied a finite difference technique to the solution of the depth- 
integrated equations of motion in a wide shallow rectangular channel with and without an abrupt 
expansion. Demuren' ' presented a two-dimensional numerical procedure, based on the GEN- 
MIX code of Spalding,12 for calculating both subcritical and supercritical flows in open channels 
with varying cross-section. Predictions agreed well with experimental data over a wide range of 
cases so long as 3D effects did not become very important. Herbich and Walsh's13 approach is 
based on the method of two characteristics assuming inclined frictionless 2D flow with hydro- 
static pressure distribution. Soulis and Bellos2 presented two numerical solutions for the 
computation of 2D supercritical open channel flow including the friction and slope effects. The 
first numerical solution was obtained by using the well-known numerical scheme of MacCor- 
mack. The second solution was obtained by solving the flow equations in integral form to a series 
of finite volumes with adjacent volumes sharing a common face. 

The predicted results were compared with other numerical solutions as well as with available 
measurements. The method can be utilized to eliminate the most common cause of spillway 
failures, namely the improper design of steep chutes. 

DEFINITION O F  PROBLEM 

The channel flow will be assumed to be homogeneous, incompressible, two-dimensional and 
viscous with wind and Coriolis forces neglected. A hydrostatic pressure distribution is assumed 
throughout the flow field. Thus the governing flow equations for the physical domain, where the 
Cartesian co-ordinate system is introduced, are 

(1) 
ah a(hu) d(hU) +-, at ax ay 

--=- 

Here x and y represent the Cartesian co-ordinate positions in the longitudinal and transverse 
directions respectively; t is the time; u and u are the averaged velocity components in the x- and 
y-directions respectively; h is the water depth; g is the acceleration due to gravity; Sox and So, are 
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the channel slopes defined as 
az0 

ox a x ’  s =-- (4) 

where zo is the bottom elevation; and the friction slopes in the x- and y-directions are defined as 

uJ(u2 + u2) 

hc2 ’ Sfx = 

U J ( U 2  + 02) 

hc2 S f y  = ’ (7) 

where C is Chbzy’s flow friction coefficient. Another option calculates the friction slopes using 
Manning’s friction coefficient n. In this case the friction slopes are 

By writing the equation for frictional resistance in this way, it was assumed that all of the 
resistance is due to bottom friction, thus neglecting the boundary layers on the side walls. The 
depth-integrated effective stress has been neglected in order to eliminate the possibility of 
introducing numerical smoothing. The time derivative terms in the flow equations should not be 
misinterpreted as an attempt to solve unsteady flow phenomena; they are simply a convenient 
way to iterate to a steady-state solution (time-marching method). 

TRANSFORMATION O F  THE FLOW EQUATIONS 

The essence of the proposed marching finite volume scheme is that distorted squares in the 
physical domain will be separately mapped into squares in the computational domain by 
independent transformations from Cartesian (x, y) to local (r ,  q )  co-ordinates (Figure 1). A finite 
volume (cell) which is a quadrilateral in the physical plane or just a square in the computational 
plane is formed by four nodes (linear element) located at the four corners of the element. The 
quadrilaterals are packed around the boundaries of the hydraulic structure and cover the whole 
flow field (Figure 2). 

The numerical scheme allows complete flexibility in choosing the spacing in the longitudinal 
and transverse directions. Moreover, the transversewise lines shown in Figure 2 can take any 
possible direction in order to accommodate abrupt changes of the hydraulic structure geometry. 
However, all current method applications utilize a computational grid similar to that shown in 
Figure 2, which is the most common choice in channel flow calculations. Such grid structures 
require minimal programming effort. 

If x i ,  yi ( i  = 1,2,3,4) are the Cartesian co-ordinates of a finite volume, then the co-ordinates of 
any point of this element can be expressed as 
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Figure 1. Distorted squares mapped into squares 
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Figure 2. Typical computational grid and finite volume elements 
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where N i  are the shape functions associated with the finite volume nodes. The shape functions are 
defined in terms of the local non-orthogonal co-ordinate system as 

The local co-ordinates lie in the range - 1 < r < 1, - 1 d q < 1 so that vertices of the square are at 

Let [ J -'I be the transformation matrix from the physical to the local co-ordinate system: 
r= * 1, q =  f 1. 

The following relations hold:14 

where J - '  is the determinant of matrix [J-'1. Under the aformentioned transformation of 
equations (1)-(3) into the local co-ordinate system (5 ,  q )  they assume the 

+- J - '  hUu+-- +- J - '  hVu+- -  =J- 'gh(S , , -S , , ) ,  

(15) 
at a5 :q[ ( ax gh2 2 )I a ( J - ' h u )  a [ ( ax 

where U and V are the velocity components along the r- and q-directions respectively and the 
velocity components u and tr in the physical domain are 

[ ;]=[J-'I[ 3. 
NUMERICAL FORMULATION 

The finite volumes (cells) used for the current numerical scheme are formed by quasi-streamlines 
and transverse lines where the element nodes are located at each of the four vertices (linear 
element). A wide range of finite elements are possible for adequate description of the surface 
boundaries, and minimal computational code logic is required for changing a particular element 
to a more sophisticated one. 

For a control volume A Vof unit height and for a given time step A t  the transformed governing 
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Figure 3. Flux balancing across a finite volume 

flow equations (14)-(16) may be written as 

- J - ' g h( So, - S'fx)A t, (19) 

- J - ' g h( Soy - S,)At. (20) 

Figure 3 shows the notation used for the flux balancing across a finite volume of the flow field. 
Thus for the massjiux an XFLUX at point i, j is defined as 

(XFLUX),, j =  [( J - ' h u)i+ 1, j + ( J  - 'h U), jlAt1/2, 

while the YFLUX at the same point i, j is defined as 

(YFLUX),, j =  [( J - ' h V ) ,  j+(  J - ' h V ) ,  j -  1 3  At /2-  

For the x-momentum flux balance the corresponding (XFLUX),, and (YFLUX),, are defined 
as 



OPEN CHANNEL FLOW CALCULATION 443 

Similarly, for the y-momentum flux balance the corresponding (XFLUX),, and (YFLUX)i, are 
defined as 

The terms A ( J - ' h U )  and A ( J - ' h V )  of the RHS of equation (18) are defined as 

A(J-'hU)=(XFLUX),, j-(XFLUX), j - 1 ,  

A ( J  -'h V)=(YFLUX)i+ 1, j-(YFLUX)i, j .  

Similar differencing is adopted for the RHS differences of equations (19) and (20). The bottom 
slopes So, and Soy are precalculated and stored, while the friction slopes Sf, and Sfy are updated in 
every time step At. 

All these fluxes may now be used in equations (18)-(20) to obtain the changes A ( J - ' h ) ,  
A( J - hu) and A( J - 'hu)  and thus the values of h, u and u for the time step under consideration. 
In all currently presented applications the above-mentioned changes are distributed between the 
four corners A , B , C  and D of the finite volume (Figure3). It was decided to send half the 
information regarding the changes in water depth h as well as in hu and hu to the upstream face of 
the finite volume involved, while the other half is sent to the downstream face. This scheme was 
found to be suitable. The decision was made after numerical experimentation. The changes were 
not directly used to yield the corresponding values of h, u and u. For all test runs two different 
amplification factors were used: a C,-factor for the estimation of h and a C,-factor for the 
estimations of u and u. The procedure is as follows: 

where C1 = l-O/h:, ,; 
A( J - ' hu)Y,f 

1 +lC,A(J- 'hu)~,~' l '  
( J  - 'hu);,? ' =( J - hu)t j +  

where C, = 025/hy, '. The upper index n denotes the computed results of the previous iteration. A 
relation similar to equation (24) holds for the estimation of (J -'hv);,;'.  The numerical scheme 
was found to be stable over a wide range of considered values of C, and C,. Once a steady 
state solution is obtained, the sum of the fluxes of each conserved variable over the faces of each 
finite volume will be zero and hence the conservation equations are satisfied irrespective of 
how these changes are distributed. Table I gives the details of the iterative scheme. The order in 
which the x- and y-momentum equations are solved is not important. The equations must be 
solved in the order: continuity, momentum. During an iteration the terms J -'gh(S,,-S, ,)  
and J -'gh(S,-Sfy) were relaxed before they were incorporated into the governing flow 
equations. A typical relaxation factor for all test runs was 0.9. 

BOUNDARY CONDITIONS 

For subcriticalflow entrance the following conditions have been proved to be valid: Along the 
upstream boundary AC (Figure 2) a relative flow direction is specified; across the flow field of the 



Table 1. Outline of the marching finite volume iterative scheme 

No 

1 Read physical and geometrical quantities of the problem 

Yes 

I I 2 Set up the computational grid 

I 3 Calculate and store at lax ,  aq/dx,  a & p y  and av lay  as well as J -' I + 4 Calculate and store S, and Soy 

I 
I 5 Calculate a linear distribution of gh2 /2  between inlet and outlet boundaries; calculate ul,ul and h' as well as 1 U'and V' 

Start iterations 

6 Solve equation (18) to obtain ha+' using old U", V" and h" 

.1 
7 Calculate flow conditions at inlet; apply boundary conditions at inlet and outlet 

I 
8 Solve equations (19) and (20) to obtain (hu)"+' and (hu)"+'  using old U", V", u", u", S;, and S;, but new h"+' 

and thereby derive new u"+' and on+ '  

1 

.1 
9 Apply solid boundary conditions requiring no flow perpendicular to solid surfaces 

10 Calculate S;ll and S;,?' using new u"+' and urn+' 

11 Calculate U"+' and V"" 

1 
12 Send all changes to the appropriate nodes of the finite volume 

1 
13 Check convergence criterion based on longitudinal velocity (cOOOol%); has it been satisfied? 

14 Print out all required flow properties 

15 Stop 
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Figure 4. Solid boundary finite volume for the first computational row ( i =  1, j =  1, J M )  

hydraulic structure a fixed value for the flow rate Q is also specified. At the downstream boundary 
BD a specified uniform-across-the-width water depth is assumed. In cases where a mixed 
subcritical-supercritical type of flow is to be encountered (always subcritical flow entrance) a 
value for the upstream total head is specified instead of the flow rate. However, this test is not 
reported in the current work. 

For supercriticalflow entrance the following conditions have been proved to be valid. Along the 
upstream boundary AC (Figure 2) the transverse flow direction velocity component is specified; 
a uniform-across-the-width water depth is also specified along with the total available head H,, . 
In cases where hydraulic jumps are to be encountered the downstream water depth h, needs 
to be specified. 

To close the problem, the condition of no mass flow across the solid boundaries needs to be 
applied. The fluxes hu and hv are taken across the faces of the boundary finite volume (Figures 2 
and 4) which are bounded by the body surface. Thereafter the flux components hu  and hu for the 
solid boundaries are recalculated requiring the velocity component normal to the solid face to be 
zero. 

NUMERICAL RESOLUTION 

Iterations were continued until the maximum change of longitudinal velocity component between 
successive iterations dropped below O-OOOl%. The total number of iterations required to achieve 
convergence was about 700, depending upon the geometrical complexity, initial water depth 
distribution and type of flow (subcritical-supercritical) (Figure 5). Subcritical flow problems 
proved to be slower in achieving convergence compared to supercritical ones. The computational 
grid was formed by finite volumes of A x  : A y  N 1 : 1. Typical test modellings have been carried out 
using a mesh of 15 x 60 grid points (Rouse et aL5 expansion channel at Fr, =4-0). Grid reduction 
tests for the above channel have shown (Figure 6)  that the Ax: A y  ratio above a certain value does 
not essentially alter the depth distribution (maximum errors of less than 1.0%). 

As with all times-marching methods, the theoretical maximum stable time step A t  is deter- 
mined by the CFL criterion, 

A x  At=iqmf 
where A x  is the streamwise distance between the upstream and downstream faces of a finite 
volume. Usually, instead of Ax,  a distance Axmin was used. Axmin is calculated as the minimum 
value of all Axs of the utilized grid. In practice the above-calculated At  was multiplied by C,, 
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Figure 5. Convergence history for the Rouse et al. expansion channel at Fr, =4.0 
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Figure 6. Grid reduction tests for the Rouse et al. expansion channel at Fr ,  =4.0 

a time factor, so as to achieve convergence. In order to speed up the solution, the value of C3 used 
was determined by numerical experimentation. Numerical instability can arise from improper 
selection of Ax :A y ratios. Therefore some extra numerical experimentation is needed. 
Many other forms of discrete approximation of the partial differential equations could have 

been selected by altering the order of the finite element involved. With the current code, sufficient 
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flexibility exists for special regions of the mesh where resolution is otherwise inadequate due to 
steep gradients in the dependent variable. 

All current test runs have been carried out on a Micro Vax I1 computer. 

APPLICATIONS 

Subcritical flow in a straight parallel wall channel 

The first flow test is a subcritical flow in a straight parallel wall channel of rectangular cross- 
section. The problem selected is a flow rate of 20.0 m3 s-l with an average exit depth of 2.0 m and 
an inlet zero flow angle. The channel width is 7.0m while the total length of the hydraulic 
structure is 14.0 m. In order to get an indication of the computed results, it was decided to employ 
a standard quasi-2D fixed-step numerical method. The water depth profiles are computed in the 
form 

A definition sketch is shown in Figure7. In performing the numerical integration the 
Ax = xi+ -xi step is held constant, S, is evaluated using Chizy’s equation, hi + =constant at 
xi+ =O.O, So is the bottom slope and the discharge Q is also constant. This technique enables 
variable-width channel flows to be calculated. Comparisons between the proposed numerical 

1 
I 

chute floor 

xi+l  
I 

x i  

Figure 7. Definition sketch for gradually vaned flow 
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Figure 8. Comparisons between current method and fixed-step method predictions of subcritical velocity and depth 
distributions for straight parallel wall channel geometry at Q =2@0 m3 s-l, h, =2.0 m and S,,=O.Ol using various Chkzy 

friction coefficients 

method results and the above-described standard fixed-step method predictions for velocity and 
water depth distributions are shown in Figure 8. Actually, this figure shows the centreline 
velocities and water depths as compared to the frictionless zero-slope solution denoted by the 
subscript ‘ir’ (irrotational flow). It must be emphasized that the velocity throughout the flow field 
is subcritical (Fr = u / J ( g h )  < 1.0). The utilized Chtzy flow friction coefficients range from 
C = 20.0 to frictionless flow, while S, is set equal to 001. The comparison is satisfactory. Figure 9 
shows the bottom slope effects at C = 500 for the above-mentioned flow conditions. The 
comparison is again satisfactory. 

Convex chute in converging supercritical jlow 

Steep chutes are commonly used in hydraulic structures as conveyances for high-velocity 
(supercritical) flows between a spillway crest and an energy dissipator. Whenever the crest length 
is greater than the width of the energy dissipator, the chute must converge in the downstream 
direction. Neilson” studied the shape in plan of the chute side walls; the object was to study the 
relationships commonly used to design an acceptable rate of curvature of the side walls. He set up 
an experimental rig. Figure 10 shows the details of the profile of the spillway downstream from 
the crest. The slope of the chute was 0.1799: 1 (equalling 10.2”). The total length of the crest was 
0762 m. A definition sketch for the convergence geometry is shown in Figure 11. 
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Figure 9. Comparison between current method and fixed-step method predictions of subcritical velocity and depth 
distributions for straight parallel wall geometry at Q = 20.0 m3 s- l ,  h2 = 2.0 m and C = 50 using various slopes 
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Figure 10. General flow profile 
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+ 
flow 

Figure 11. Definition sketch for the convergence geometry of Neilson’s convex chute 

The side wall chute is inclined 5 : 1. The total length (axial distance) of the chute was 2.469 m. 
A value for the Manning flow friction coefficient n was obtained equal to Q012, which agrees with 
published values for a planed wood surface. This value was used in all subsequent computations 
herein. Three test runs were reported by Nielson in order to determine the water surface cross- 
section profiles. The first test run used Q = 0.0167 m3 s- the second Q = 002803 m3 s- and the 
third Q=0-0419m3s-’ (which was used to test a converging-diverging chute). The current 
numerical method was used to predict the water surface cross-sections for the 6rst two discharges, 
Figures 12(a)-12(c) show the comparison between the predicted and measured” water surface 
cross-section profiles for the Q=0.0167m3s-’ test case. The critical depth for the lower- 
discharge case is 0.0369 m. The comparison is considered to be satisfactory for nearly all stations. 
Figures 13(a)-13(c) show the comparison between measurements and predictions for the 
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Q=0.02803 m3 s - l  test case. Here the critical depth value is 0.0521 m. Again the agreement is 
satisfactory, although at the downstream stations (Figure 13(c)) the predictions tend to yield 
higher water depth values than the measured ones. Close to the side walls the water depth values 
(measured and predicted) are higher than those of the main flow regions. 
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Figure 13(b). Water surface cross-section profiles for the Q=002803 rn3s-l test case at stations 0.2164 and 0.3170111 
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Figure 13(c). Water surface cross-section profiles for the Q=0*02803 m3 s-’ test case at stations 0.4694 and 06218 m 
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Figure 14. Linearly expanding channel geometry 

entrance width, and the ha1 width is 15b. The expansion was tested for an entrance Froude 
number of 2.0 and a depth-to-width ratio h/b at entrance of 0-5. 

Figure 15 shows the variation of the centreline velocities in the improved solution as compared 
to the frictionless, zero-slope solution (denoted by ‘ir’) for a flat slope. Identical flow behaviour 
has been derived using the integral method.2 

Figure 16 shows the predictions of exit velocity variation with channel slope at Fr,  =2-0 and 
h/b=0.5 using various ChCzy flow friction coefficients. For steep slopes the agreement between 
the current method predictions and those of the integral method worsens. Finally, Figure 17 
shows the predictions of exit velocity variation with Chdy’s flow friction coefficient using various 
channel slopes. 
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Hydraulic jumps 

In order to get an indication of capability of the proposed marching finite volume method to 
calculate hydraulic jumps, it was decided to simulate 1D flows. Thus the first test case is an 
H3-curve. The channel width is 5.0 m while the total length is 100.0 m. The inlet water depth is 
1.150 m and the discharge is 55-4 m3 s- '. A 2.80 m exit water depth is applied and the problem is 
to calculate the location and strength of the hydraulic jump when the Manning flow friction 
coefficient n = 0.020. The standard quasi-2D fixed-step numerical method described earlier 
(equation (26)) was employed and the comparison of the predictions is shown in Figure 18. The 
agreement is satisfactory, although the exact location of the marching finite volume prediction is 
Ax or 2Ax downstream from that computed by the standard quasi-2D method. When an adverse 
slope is applied (So= -0.001) with identical flow conditions and geometry as described for the 
H3-curve, except for the exit water depth which is now 2.74 m, the predicted results are as shown 
in Figure 19 and are considered to be satisfactory. In this case the marching finite volume result 
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Figure 18. Hydraulic jump predictions for an H3-curve 

currant 
r t h d  

f ixmd-.tap 
rthod 

dimtlllce (m) 

Figure 19. Hydraulic jump predictions for an A3-curve 
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for the location of the hydraulic jump appears to be upstream from that computed by the 
standard quasi-2D method. 

Channel expansion at Frl =2*0 after Rouse et al.’ 

The channel expansion shown in Figure 20 was used to test the accuracy of the numerical 
method by comparing it with the results of other numerical methods as well as with measure- 
ments. The expansion shown was designed for an entrance Froude number of 2.0. 

The actual channel geometry is given by the formula 

y/b, =&~/2b,)~” ++, (27) 
where b, is the channel width at entrance. Figure 20 also shows the flow depth contours h / h ,  as 
measured by Rouse et al. Comparisons between predictions and measurements for the above 
channel are shown in Figures 21-23 for the centreline, mid-stream line and curved side respect- 
ively. Three numerical methods are presented: an integral method,2 an explicit two-step 
(predictor-corrector) scheme (McCormack)’ and the current numerical scheme. The comparisons 
are considered to be satisfactory. 

Channel expansion at Fr, =4-0 after Rouse et al.’ 

Finally, the channel expansion shown in Figure 24 was used to test the accuracy of the method 
for high entrance Froude number (=4-0). The actual channel geometry is now given by the 
formula 

y/bl =+(~/4b,)”’ +). (28) 

Figure 20. Channel geometry for Fr, =2.0 after Rouse et nl.,’ with measured h/h, contours 
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Figure 21. Comparison between predictions and measurements for the Rouse et al. channel (centreline) at Fr, = 2 9  
S,=@O and n=@012 
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Figure 22. Comparison between predictions and measurements for the Rouse et nl. channel (mid-stream line) at 
Fr,=2.0, S,=O.O and n=0012 
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I 0  

Figure 23. Comparison between predictions and measurements for the Rouse et al. channel (curved side) at Fr, = 2 9  
S,=O.O and n=O.012 

* 
Figure 24. Channel geometry for Fr,=4.0 after Rouse et aL,’ with measured h/h, contours 

Comparisons between predictions and measurements for the above channel are shown m 
Figures 25-27 for the centreline, mid-stream line and curved side respectively. Again the predicted 
results agree with each other, while their agreement with measurements seems to be satisfactory 
particularly along the mid-stream Bow line. 
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Figure 25. Comparison between predictions and measurements for the Rouse et al. channel (centreline) at Fr, =4.0, 
S,=O*O and n=@012 

Figure 26. Comparison between predictions and measurements for the Rouse et al. channel (mid-stream line) at 
Fr,=4.0,So=0.0 and n=0.012 

In order to calculate the slope effects, it was decided to test the above channel using four 
different slopes, namely Sox = 0.025,0.050,0100 and 0.200. The slope Soy was kept equal to zero. 
The predicted results are shewn in Figures 28-30 for the centreline, mid-stream line and curved 
side respectively. High slopes yield lower depth ratios, which is an expected result. In all three 
fipres the flat slope solution is also presented. 
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Figure 27. Comparison between predictions and measurements for the Rouse et al. channel (centred side) at Fr,  =4.0, 
So = 0.0 and n = 0.012 
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Figure 28. Computed results for the Rouse et 01. channel (centreline) at Fr, =4.0, S,,=oO and n =oO12 using various 
bottom slopes 
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Figure 29. Computed results for the Rouse et al. channel (mid-stream line) at Fr ,  =4*0, S,,=O.O and n=0012 using 
various bottom slopes 
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Figure 30. Computed results for the Rouse et al. channel (curved side) at Fr ,  = 4 9  S,=M and n=0012 using various 
bottom slopes 
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The Froude number distributions along the axial distance for the centreline, mid-stream line 
and curved side of the channel are shown in Figure 31. In nearly all regions the flow is expanding. 
However, in the first 20% of the axial distance and along the centreline the Froude number is 
slightly lower than the initial inlet one set forth. The variation of the centreline exit Froude 
number distribution with the entrance Froude number is shown in Figure 32. A flat slope was used 

Figure 31. Froude number predictions for the Rouse et al. channel at Fr ,  =4.0, S,,=O.O and n=O.012 
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Figure 32. Predicted exit Froude number distribution for the Rouse er al. channel (Fr ,  =4.0 design) at n=0012 and 
S,, = 00 using variable entrance flow 
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Figure 33. Predicted flow friction effects for the Rouse et al. channel at Fr ,  =4.0 and So, =O.O 

along with a Manning flow friction coefficient n of 0.012. Finally, the effects of using various 
friction coefficients on the h/h, ratio for Fr, ~ 4 . 0  and a flat slope are shown in Figure 33. Again, 
higher friction resulted in higher h/hil depth ratios. This behaviour is the expected one. 

CONCLUSIONS 

A marching finite volume numerical method has been developed and subsequently applied to 
open channel flow calculations. There are two main advantages of the method. The first is the 
ability to calculate subcritical-supercritical types of flow. The second is the utilization of a body- 
fitted non-orthogonal local co-ordinate system. Thus the developed algorithm is able to calculate 
two-dimensional, steady, subcritical and/or supercritical flows including the usually neglected 
terms of slope and bottom friction. The method has been applied to a variety of open channel flow 
configurations in order to validate its potenfialities. The applications include: subcritical flow in a 
straight parallel wall channel; convex chute in converging supercritical flow; linearly expanding 
channel; hydraulic jumps; channel expansions designed at specific entrance Froude numbers 
(Fr, = 2-0 and 4.0). Comparisons with available measurements and/or other numerical solutions 
show that the proposed method is comparatively accurate, reliable and fast. It can be extended to 
the design of spillway chutes in order to obtain the desired flow depth distribution. 
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